Package: EFDR 1.3

EFDR: Wavelet-Based Enhanced FDR for Detecting Signals from Complete or Incomplete Spatially Aggregated Data

Enhanced False Discovery Rate (EFDR) is a tool to detect anomalies in an image. The image is first transformed into the wavelet domain in order to decorrelate any noise components, following which the coefficients at each resolution are standardised. Statistical tests (in a multiple hypothesis testing setting) are then carried out to find the anomalies. The power of EFDR exceeds that of standard FDR, which would carry out tests on every wavelet coefficient: EFDR choose which wavelets to test based on a criterion described in Shen et al. (2002). The package also provides elementary tools to interpolate spatially irregular data onto a grid of the required size. The work is based on Shen, X., Huang, H.-C., and Cressie, N. 'Nonparametric hypothesis testing for a spatial signal.' Journal of the American Statistical Association 97.460 (2002): 1122-1140.

Authors:Andrew Zammit-Mangion [aut, cre], Hsin-Cheng Huang [aut]

EFDR_1.3.tar.gz
EFDR_1.3.zip(r-4.5)EFDR_1.3.zip(r-4.4)EFDR_1.3.zip(r-4.3)
EFDR_1.3.tgz(r-4.4-any)EFDR_1.3.tgz(r-4.3-any)
EFDR_1.3.tar.gz(r-4.5-noble)EFDR_1.3.tar.gz(r-4.4-noble)
EFDR_1.3.tgz(r-4.4-emscripten)EFDR_1.3.tgz(r-4.3-emscripten)
EFDR.pdf |EFDR.html
EFDR/json (API)

# Install 'EFDR' in R:
install.packages('EFDR', repos = c('https://andrewzm.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/andrewzm/efdr/issues

On CRAN:

4.74 score 5 stars 22 scripts 252 downloads 11 exports 60 dependencies

Last updated 1 years agofrom:cc20b56f1e. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 22 2024
R-4.5-winOKNov 22 2024
R-4.5-linuxOKNov 22 2024
R-4.4-winOKNov 22 2024
R-4.4-macOKNov 22 2024
R-4.3-winOKNov 22 2024
R-4.3-macOKNov 22 2024

Exports:df.to.matdiagnostic.tablefdrpowerregridtest_imagetest.bonferronitest.efdrtest.efdr.condsimtest.fdrtest.loswav_th

Dependencies:abindADGofTestclassclassIntclicodetoolscolorspacecopulacpp11DBIdoParalleldplyre1071fansiFNNforeachgenericsgluegslgstatintervalsiteratorsKernSmoothlatticelifecyclemagrittrMASSMatrixmultitapermvtnormnumDerivpcaPPpillarpkgconfigproxypsplinepurrrR6Rcpprlangs2sfsftimespspacetimestablediststarsstringistringrtibbletidyrtidyselectunitsutf8vctrswaveslimwithrwkxtszoo

Enhanced False Discovery Rate (EFDR) tutorials

Rendered fromEFDR_documents.Rmdusingknitr::rmarkdownon Nov 22 2024.

Last update: 2015-01-14
Started: 2014-12-21