Package: EFDR 1.3
EFDR: Wavelet-Based Enhanced FDR for Detecting Signals from Complete or Incomplete Spatially Aggregated Data
Enhanced False Discovery Rate (EFDR) is a tool to detect anomalies in an image. The image is first transformed into the wavelet domain in order to decorrelate any noise components, following which the coefficients at each resolution are standardised. Statistical tests (in a multiple hypothesis testing setting) are then carried out to find the anomalies. The power of EFDR exceeds that of standard FDR, which would carry out tests on every wavelet coefficient: EFDR choose which wavelets to test based on a criterion described in Shen et al. (2002). The package also provides elementary tools to interpolate spatially irregular data onto a grid of the required size. The work is based on Shen, X., Huang, H.-C., and Cressie, N. 'Nonparametric hypothesis testing for a spatial signal.' Journal of the American Statistical Association 97.460 (2002): 1122-1140.
Authors:
EFDR_1.3.tar.gz
EFDR_1.3.zip(r-4.5)EFDR_1.3.zip(r-4.4)EFDR_1.3.zip(r-4.3)
EFDR_1.3.tgz(r-4.4-any)EFDR_1.3.tgz(r-4.3-any)
EFDR_1.3.tar.gz(r-4.5-noble)EFDR_1.3.tar.gz(r-4.4-noble)
EFDR_1.3.tgz(r-4.4-emscripten)EFDR_1.3.tgz(r-4.3-emscripten)
EFDR.pdf |EFDR.html✨
EFDR/json (API)
# Install 'EFDR' in R: |
install.packages('EFDR', repos = c('https://andrewzm.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/andrewzm/efdr/issues
Last updated 1 years agofrom:cc20b56f1e. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 22 2024 |
R-4.5-win | OK | Nov 22 2024 |
R-4.5-linux | OK | Nov 22 2024 |
R-4.4-win | OK | Nov 22 2024 |
R-4.4-mac | OK | Nov 22 2024 |
R-4.3-win | OK | Nov 22 2024 |
R-4.3-mac | OK | Nov 22 2024 |
Exports:df.to.matdiagnostic.tablefdrpowerregridtest_imagetest.bonferronitest.efdrtest.efdr.condsimtest.fdrtest.loswav_th
Dependencies:abindADGofTestclassclassIntclicodetoolscolorspacecopulacpp11DBIdoParalleldplyre1071fansiFNNforeachgenericsgluegslgstatintervalsiteratorsKernSmoothlatticelifecyclemagrittrMASSMatrixmultitapermvtnormnumDerivpcaPPpillarpkgconfigproxypsplinepurrrR6Rcpprlangs2sfsftimespspacetimestablediststarsstringistringrtibbletidyrtidyselectunitsutf8vctrswaveslimwithrwkxtszoo
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Wavelet-Based Enhanced FDR for Signal Detection in Noisy Images | EFDR-package EFDR |
Change xyz data-frame into a Z image | df.to.mat |
2x2 diagnostic table | diagnostic.table |
Power function | fdrpower |
Find wavelet neighbourhood | nei.efdr |
Regrid ir/regular data | regrid |
Create a test image | test_image |
Test for anomalies in wavelet space via conditional simulation | test.efdr.condsim |
Indices of wavelets exceeding a given threshold | wav_th |
Test for anomalies in wavelet space | test.bonferroni test.efdr test.fdr test.los wavelet-test |