Package: FRK 2.3.1

FRK: Fixed Rank Kriging

A tool for spatial/spatio-temporal modelling and prediction with large datasets. The approach models the field, and hence the covariance function, using a set of basis functions. This fixed-rank basis-function representation facilitates the modelling of big data, and the method naturally allows for non-stationary, anisotropic covariance functions. Discretisation of the spatial domain into so-called basic areal units (BAUs) facilitates the use of observations with varying support (i.e., both point-referenced and areal supports, potentially simultaneously), and prediction over arbitrary user-specified regions. `FRK` also supports inference over various manifolds, including the 2D plane and 3D sphere, and it provides helper functions to model, fit, predict, and plot with relative ease. Version 2.0.0 and above also supports the modelling of non-Gaussian data (e.g., Poisson, binomial, negative-binomial, gamma, and inverse-Gaussian) by employing a generalised linear mixed model (GLMM) framework. Zammit-Mangion and Cressie <doi:10.18637/jss.v098.i04> describe `FRK` in a Gaussian setting, and detail its use of basis functions and BAUs, while Sainsbury-Dale, Zammit-Mangion, and Cressie <doi:10.18637/jss.v108.i10> describe `FRK` in a non-Gaussian setting; two vignettes are available that summarise these papers and provide additional examples.

Authors:Andrew Zammit-Mangion [aut, cre], Matthew Sainsbury-Dale [aut]

FRK_2.3.1.tar.gz
FRK_2.3.1.zip(r-4.5)FRK_2.3.1.zip(r-4.4)FRK_2.3.1.zip(r-4.3)
FRK_2.3.1.tgz(r-4.4-x86_64)FRK_2.3.1.tgz(r-4.4-arm64)FRK_2.3.1.tgz(r-4.3-x86_64)FRK_2.3.1.tgz(r-4.3-arm64)
FRK_2.3.1.tar.gz(r-4.5-noble)FRK_2.3.1.tar.gz(r-4.4-noble)
FRK_2.3.1.tgz(r-4.4-emscripten)FRK_2.3.1.tgz(r-4.3-emscripten)
FRK.pdf |FRK.html
FRK/json (API)

# Install 'FRK' in R:
install.packages('FRK', repos = c('https://andrewzm.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/andrewzm/frk/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

8.87 score 66 stars 1 packages 188 scripts 699 downloads 2 mentions 53 exports 122 dependencies

Last updated 2 months agofrom:fc6389b3ec. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 04 2024
R-4.5-win-x86_64OKNov 04 2024
R-4.5-linux-x86_64OKNov 04 2024
R-4.4-win-x86_64OKNov 04 2024
R-4.4-mac-x86_64OKNov 04 2024
R-4.4-mac-aarch64OKNov 04 2024
R-4.3-win-x86_64OKNov 04 2024
R-4.3-mac-x86_64OKNov 04 2024
R-4.3-mac-aarch64OKNov 04 2024

Exports:AICauto_basisauto_BAUsBasisBAUs_from_pointsBICcoefcoef_uncertaintycombine_basisdata.frame<-df_to_SpatialPolygonsdistancedistRdraw_worldEmptyThemeEuclid_disteval_basisfittedFRKgc_distgc_dist_timeinfo_fitLinePlotThemelocal_basislogliklogLikmanifoldmeasurenbasisnobsnresobserved_BAUsopts_FRKplaneplotplot_spatial_or_STpredictradial_basisreal_lineremove_basisresidualsshow_basissimulateSpatialPolygonsDataFrame_to_dfsphereSRESRE.fitSRE.predictSTplaneSTsphereTensorPtypeunobserved_BAUs

Dependencies:abindbackportsbase64encbootbroombslibcachemcarcarDatacheckmateclassclassIntcliclustercolorspacecorrplotcowplotcpp11data.tableDBIDerivdigestdoBydotCall64dplyre1071evaluatefansifarverfastmapfmesherfontawesomeforeignFormulafsgenericsggplot2ggpubrggrepelggsciggsignifgluegridExtragtablehighrHmischtmlTablehtmltoolshtmlwidgetsintervalsisobandjquerylibjsonliteKernSmoothknitrlabelinglatticelifecyclelme4magrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimeminqamodelrmunsellnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigplyrpolynomproxypurrrquantregR6rappdirsRColorBrewerRcppRcppEigenreshape2rlangrmarkdownrpartrstatixrstudioapis2sassscalessfspspacetimespamsparseinvSparseMstatmodstringistringrsurvivaltibbletidyrtidyselecttinytexTMBunitsutf8vctrsviridisviridisLitewithrwkxfunxtsyamlzoo

Introduction to FRK

Rendered fromFRK_intro.Rnwusingknitr::knitron Nov 04 2024.

Last update: 2024-06-17
Started: 2015-05-13

Tutorial on modelling spatial and spatio-temporal non-Gaussian data with FRK

Rendered fromFRK_non-Gaussian.Rnwusingknitr::knitron Nov 04 2024.

Last update: 2022-08-30
Started: 2021-09-24

Readme and manuals

Help Manual

Help pageTopics
AIRS data for May 2003AIRS_05_2003
Americium soil dataAm_data
Automatic basis-function placementauto_basis
Automatic BAU generationauto_BAUs
Generic basis-function constructorBasis
Basis functionsBasis-class Basis_obj-class TensorP_Basis-class
Creates pixels around pointsBAUs_from_points BAUs_from_points,SpatialPoints-method BAUs_from_points,ST-method
Uncertainty quantification of the fixed effectscoef_uncertainty
Combine basis functionscombine_basis combine_basis,Basis-method combine_basis,list-method
Basis-function data frame object$,Basis-method $<-,Basis-method as.data.frame.Basis as.data.frame.TensorP_Basis data.frame<- data.frame<-,Basis-method data.frame<-,TensorP_Basis-method data.frame_Basis,Basis-method
Convert data frame to SpatialPolygonsdf_to_SpatialPolygons
Distance Matrix Computation from Two Matricesdist-matrix distR
Compute distancedistance distance,manifold-method distance,measure-method
Pre-configured distancesdistances Euclid_dist gc_dist gc_dist_time measure
Draw a map of the world with country boundaries.draw_world
Evaluate basis functionseval_basis eval_basis,Basis,matrix-method eval_basis,Basis,SpatialPointsDataFrame-method eval_basis,Basis,SpatialPolygonsDataFrame-method eval_basis,Basis,STIDF-method eval_basis,Basis-matrix-method eval_basis,Basis-SpatialPointsDataFrame-method eval_basis,Basis-SpatialPolygonsDataFrame-method eval_basis,Basis-STIDF-method eval_basis,TensorP_Basis,matrix-method eval_basis,TensorP_Basis,STFDF-method eval_basis,TensorP_Basis,STIDF-method eval_basis,TensorP_Basis-matrix-method eval_basis,TensorP_Basis-STFDF-method eval_basis,TensorP_Basis-STIDF-method
Construct SRE object, fit and predictAIC,SRE-method BIC,SRE-method coef,SRE-method coef_uncertainty,SRE-method fitted,SRE-method FRK logLik,SRE-method nobs,SRE-method predict,SRE-method residuals,SRE-method simulate SRE SRE.fit
Retrieve fit information for SRE modelinfo_fit info_fit,SRE-method
manifoldinitialize,manifold-method
ISEA Aperture 3 Hexagon (ISEA3H) Discrete Global Gridisea3h
Construct a set of local basis functionslocal_basis radial_basis
(Deprecated) Retrieve log-likelihoodloglik loglik,SRE-method
Retrieve manifoldmanifold manifold,Basis-method manifold,TensorP_Basis-method
manifoldmanifold-class plane-class real_line-class sphere-class STmanifold-class STplane-class STsphere-class
measuremeasure-class
MODIS cloud dataMODIS_cloud_df
Number of basis functionsnbasis nbasis,Basis_obj-method nbasis,SRE-method
NOAA maximum temperature data for 1990-1993NOAA_df_1990
Return the number of resolutionsnres nres,Basis-method nres,SRE-method nres,TensorP_Basis-method nres_basis,Basis-method nres_SRE,SRE-method
Observed (or unobserved) BAUsobserved_BAUs observed_BAUs,SRE-method unobserved_BAUs unobserved_BAUs,SRE-method
FRK optionsopts_FRK
planeplane
Plot predictions from FRK analysisplot plot,SRE,list-method plot,SRE,SpatialPixelsDataFrame-method plot,SRE,SpatialPointsDataFrame-method plot,SRE,SpatialPolygonsDataFrame-method plot,SRE,STFDF-method
Plot a Spatial*DataFrame or STFDF objectplot_spatial_or_ST plot_spatial_or_ST,SpatialPixelsDataFrame-method plot_spatial_or_ST,SpatialPointsDataFrame-method plot_spatial_or_ST,SpatialPolygonsDataFrame-method plot_spatial_or_ST,STFDF-method
Plotting themesEmptyTheme LinePlotTheme plotting-themes
real linereal_line
Removes basis functionsremove_basis remove_basis,Basis,ANY-method remove_basis,Basis,SpatialPolygons-method remove_basis,Basis-method
Show basis functionsshow_basis show_basis,Basis-method show_basis,TensorP_Basis-method
SpatialPolygonsDataFrame to dfSpatialPolygonsDataFrame_to_df
spheresphere
Spatial Random Effects classSRE-class
Deprecated: Please use 'predict'SRE.predict
plane in space-timeSTplane
Space-time sphereSTsphere
Tensor product of basis functionsTensorP TensorP,Basis,Basis-method TensorP,Basis-Basis-method
Type of manifoldtype type,manifold-method
World mapworldmap